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Localized states in a triangular set of linearly coupled complex Ginzburg-Landau equations
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We introduce a pattern-formation model based on a symmetric system of three linearly coupled cubic-quintic
complex Ginzburg-Landau equations, which form a triangular configuration. This is the simplest model of a
multicore fiber laser. We identify stability regions for various types of localized patterns possible in this setting,
which include stationary and breathing triangular vortices.
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I. INTRODUCTION AND THE MODEL

Universal models describing formation of localized states
(LSs) and extended patterns in dissipative nonlinear media
are based on complex Ginzburg-Landau (CGL) equations.
These models are interesting in their own right [1,2], and in
terms of applications to nonlinear optics, hydrodynamics,
reaction-diffusion systems, etc. [2,3].

Stationary or oscillatory LSs are the most fundamental
solutions to CGL equations. In the application to nonlinear
optics, they represent pulses generated by fiber lasers [4].
Exact solutions for pulses are available in the CGL equation
with the simplest cubic nonlinearity [5], but they are unstable
(more sophisticated LSs were found in two-dimensional
models of laser cavities [6]). A straightforward modification
of the equation, aimed at creation of stable LSs, is provided
by the cubic-quintic (CQ) nonlinearity, with linear loss and
cubic gain (rather than the linear gain and cubic loss, as in
the ordinary cubic CGL equation), and additional quintic loss
that provides for the overall stability. The CQ CGL equation
was first introduced in Ref. [7], and its stable LS solutions
were predicted, using an analytical approximation, in Ref.
[8]. Later, LSs and their stability in this model were investi-
gated in detail [9,10].

Stable pulses may also be found in a model with the cubic
nonlinearity (without higher-order terms), composed of the
cubic CGL equation linearly coupled to an extra linear equa-
tion with the loss term [11]. This system gives rise to exact
analytical solutions for stable LSs [12], and (numerically
found) breathers, i.e., randomly oscillating (and walking, in
the general case) robust pulses [13].

Linearly coupled CGL equations supply a model for ring
lasers based on dual-core optical fibers [11,14], and are note-
worthy dynamical systems by themselves [15]. However, the
above-mentioned stable LSs were previously found only in
strongly asymmetric dual-core models, with gain in one core,
and loss in the other (otherwise, LSs cannot be stable)
[11-13]. Tt is natural to look for symmetric and asymmetric
stable LSs in symmetric dual-core (twin-core, in that case)
models. This was done in recent work [16], where four spe-
cies of stable LSs had been identified, by dint of systematic
numerical analysis: breathers and three kinds of stationary
LSs, viz., symmetric and asymmetric ones, and split pulses,
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the states of the latter type featuring a separation between
centers of the two components.

Recently, new designs of fiber lasers with dozens of cores
have been worked out [17]. In particular, a distinctive feature
of necklace-shaped fiber sets, consisting of N=3 cores
placed along a circumference, is a possibility of the existence
of vortex modes in them, which we realize as states with the
phase difference of 27/N between adjacent cores, the re-
spective phase change along the full circle being A¢p=27. If
A¢ is a multiple of 27, it corresponds to a higher-order
vortex. These structures resemble vortex-carrying circularly
arranged clusters of localized states in a two-dimensional
CGL model [18], since a chain of linearly coupled CGL
equations may be considered as a discrete version of a single
continuous higher-dimensional equation.

In this paper, our aim is to report a comprehensive chart
of various stable LS states, including vortices, that exist in
the triangular set of CQ CGL equations, which is the sim-
plest version of the above-mentioned necklace arrangement.
Accordingly, the model is a system of three CQ CGL equa-
tions, each one being symmetrically coupled by linear terms
to its two neighbors,

iU, + 32U, +|UPU=i8U + i UPU +iBU,, — (in - v)|U*U
- k(V+ W), (1)

iV, 4+ 3V, +|VPV=i6V +ie VPV +iBV, - (in—v)|V[*V
-k(W+U), (2)

iW.+ W, + [WPW = i6W + il WW + iBW,, — (i — v)
X|W*W = k(U + V). (3)

This system models a structured fiber with three cores form-
ing an equilateral triangle. The equations are written in the
usual fiber-optics notation, with U, V, and W being complex
amplitudes of the electromagnetic waves in three cores, z and
t the propagation distance and reduced time, and the coeffi-
cient in front of the Kerr terms (nonlinear terms on the left-
hand side of the equations) scaled to be 1. Anomalous group-
velocity dispersion, which facilitates the creation of solitons,
is assumed by setting the coefficients in front of the second
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derivatives on the left-hand side to be +1/2. Real constants
-0, 1, and € account for the linear and quintic loss and cubic
gain, respectively (therefore, we assume §<0 and u,€>0),
and B>0 is a spectral-filtering coefficient, which accounts
for the dispersive linear loss. The quintic correction to the
Kerr nonlinearity, with coefficient v, is also included. We
assume v=0, as such corrections to the nonlinear response
of self-focusing optical media were experimentally found to
be self-defocusing [19]. Finally, real k accounts for the linear
cyclic coupling between the three cores. We use the residual
scaling invariance of Egs. (1)—(3) to fix u=0.1.

Note that solitons in conservative models of triangular
configurations formed by ordinary nonlinear fibers, and
by fiber Bragg gratings (FBGs), have been previously
studied in Refs. [20,21], respectively. Various types of sym-
metric and asymmetric soliton states in the triangular
systems were found in these works (in Ref. [21], the stability
of the respective solutions was investigated too); however,
triangular vortex-soliton complexes were not considered
previously.

The rest of the paper is organized as follows. In Sec. I,
we present a generic example of a diagram in the plane of
(8, k), that shows different species of stable LSs that are
possible in the present system. The diagram readily features
bistability and tristability. In Sec. III, nonvortical states
(symmetric and asymmetric ones, including breathers) are
considered in detail. Section IV provides for a detailed de-
scription of vortices (including vortical breathers). The paper
is concluded by Sec. V.

II. THE PARAMETER CHART OF LOCALIZED-STATE
COMPLEXES

Searching for stable LSs in coupled CGL equations is
facilitated by the fact that they are attractors, hence they can
be found from direct simulations of Egs. (1)—(3) (we are
interested in attractors which represent localized solutions,
but they are not necessarily stationary—as shown below,
they may feature periodic or chaotic intrinsic dynamics). In
the case of multistability, the attractor revealed by the simu-
lations depends on the initial configuration. Here, we present
a chart of LS states in the plane of (8, k), i.e., the linear-loss
and linear-coupling constants. In particular, in the fiber-laser
setup & may be easily varied by adjusting the pump. The
chart is displayed in Fig. 1 for »=0.1 and €=$=0.5 in Eqs.
(1)-(3) (recall ©u=0.1 was fixed by scaling). Simulations
performed at other values of the parameters demonstrate that
this example is quite a generic one (the results might be
essentially different for =0, when, due to the absence of the
dispersive loss, LSs are mobile [10]; however, stable LSs
could not be found in the present model with 8=0).

To include all possible types of stable LSs at given values
of the parameters, the simulations were run, until an estab-
lished state could be identified, starting from initial configu-
rations of several different types. These were composed of
numerically exact stable LS solutions of the isolated CQ
CGL equation (corresponding to x=0), Uy(7) (they were
found by means of the same technique as outlined above,
i.e., as attractors of the respective isolated equation). The
following inputs were used at z=0.
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FIG. 1. The diagram of all stable localized states, in the
(68, k) parameter plane, generated by simulations of Egs. (1)-(3)
which started with five different types of initial conditions, (i)—(v),
see text. The “zero state” (symbol V), which appears at a single
spot (6=-0.26,k=0.4), implies that no stable nonzero solutions
could be found in this case. Parameters are u=v=0.1 and
e=p=025.

() A vortex, with U(D=Uy(7), V(1)=Uy(ne>™",
W(7)=Uy(7)e*™ (the phase shifts between the three compo-
nents lend this configuration an obvious vortical structure).

(i)  Perturbed  vortices, with  U(7)=0.8Uy(7),
V(1=0.8Uy(De>™3,  W(n)=12Uy(De*™3, or  U(7)
=0.8Uy(7), V(N=1.2Uy(1)e*™3, W(1)=1.2Uy(7)e*™3, the
respective coefficients 0.8 and 1.2 accounting (here and be-
low) for the perturbation imposed on the vortex.

(iii) Asymmetric complexes of two types, (0,U,,0), i.e.,
with U(7)=W(7)=0, V(7)=Uy(7), and (U,,0,U,), i.e., with
U(n=W(7)=Uy(7), V(7)=0.

(iv) Symmetric complexes
U(7)=V(7)=W(7)=Uy().

(v) Perturbed symmetric complexes, with U(7)=W(7)
=0.8Uy(7), V(nN=12Uy(7), or U(n)=W(71)=1.2Uy(7),
V(7)=0.8U,(7).

Inputs (i) and (ii) on the one side, and (iv) and (v) on the
other always generated identical eventual states (which at-
tests to the breadth of the attraction basin of those states).
Thus, up to three distinct LS complexes may be finally ob-
served, originating, respectively, from inputs (i) or (ii), (iii),
and (iv) or (v).

All these species are included in the chart displayed in
Fig. 1 (their examples are presented below). The chart fea-
tures vast areas of bistability, and also considerable regions
of tristability. For comparison, it is relevant to mention that a
similar diagram of LSs in the system of two linearly coupled
CQ CGL equations has a relatively small bistability region,
and tristability (the coexistence of symmetric, asymmetric
and split pulses) was, as a matter of fact, found at a single
spot (corresponding to the limit case of §=0) [16].

without vorticity, with
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FIG. 2. Formation of stable asymmetric complexes of the
“small-large-small” (a) and “large-small-large” (b) types, which
correspond, respectively, to symbols “X” and “+” in Fig. 1. In
either case, the initial pattern is (Uy,0, Uy), belonging to type (iii),
see text. Parameters are 6=-0.16, k=0.4 (a), and 6=-0.16,
k=0.2 (b).

III. NONVORTICAL SOLITARY-PULSE COMPLEXES

First, we specify those types of stable states that do not
carry vorticity. In Fig. 2, typical examples of the self-
trapping of two different varieties of asymmetric LS com-
plexes (with different amplitudes of the three components,
“small-large-small” and “large-small-large”) are displayed.
They resemble stable asymmetric soliton sets found in the
triangular system of FBGs [21]. In most cases, the two vari-
eties of the asymmetric states coexist with each other, and
they are found at small values of the coupling constant, «
=0.4, which is quite natural, as the increase of « tends to
eliminate asymmetric states in systems of linearly coupled
equations [16]. Note that both types of the asymmetric
states in the examples displayed in Fig. 2 are generated from
inputs of a single type, (U,,0,U,), which may be naturally
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FIG. 3. Formation of a stable antisymmetric state (correspond-
ing to symbol * in Fig. 1), with one component vanishing and two
others being in antiphase, through sudden onset of instability of an
initial vortex configuration [of type (i), see text]. In this case,
6=-0.26, ,k=0.5. While the V component drops down and van-
ishes, the relative phase of the nonvanishing ones quickly changes
from 27/3 to .

classified as “large-small-large,” see above. Thus, the evolu-
tion may either maintain the structure of the initial pattern or
alter it [in particular, a reversal of the initial pattern is ob-
served in Fig. 2(a), from “large-small-large” to “small-large-
small”].

In addition to the two varieties of the asymmetric states,
which appear at many spots in the chart of Fig. 1, a stable
antisymmetric state, with U=—W and V=0, was found at
one spot. Straightforward inspection shows that such solu-
tions to Egs. (1)—(3) are indeed possible. Unlike the asym-
metric states, the antisymmetric one develops as a result of
an instability of the initial vortical configuration [of type (i)],
see Fig. 3. Similar stable antisymmetric solutions were found
in the triangular system of linearly coupled FBGs [21].

In more typical cases, instability of the initial vortex con-
figuration (if it is unstable) leads to the emergence of (appar-
ently) chaotic breatherlike states, as shown in Fig. 4. It can-
not be excluded that, at very large z, they will slowly decay,
or transform themselves into stable asymmetric complexes
(the latter possibility is suggested by the fact that the chaotic
breathers are observed in the range of weak linear coupling,
k=<0.5, where strongly asymmetric states dominate [16]).
We stress that, although the chaotic breathers are generated
from unstable vortices, they lose the vorticity, showing no
persistent phase differences between the components.

In a few cases, when the asymmetric complex of the
“large-small-large” type does not emerge (in fact, it exists
but is unstable), in the range of 0.3 < k=<0.5, the simulations
starting with the input of type (U,,0,U,) lead to the estab-
lishment of regular breathers, which are dynamical counter-
parts of the asymmetric states: as shown in Fig. 5, the
breather is an asymmetric complex whose shape periodically
oscillates between two forms considered above,
“small-large-small” and “large-small-large.”
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FIG. 4. (a) Formation of a chaotic breather from an unstable
vortex [initial configuration (i), see text], shown by means of con-
tour plots (which provides for a clearer picture in this case than
three-dimensional images). (b) Profiles of the pattern at the end of
the simulation, z=900. This case corresponds to symbol % in Fig.
1, and the example is displayed for 6=-0.16, k=0.2.

The remaining species of stable nonvortex states are sym-
metric complexes, with equal amplitudes of the three com-
ponents (they correspond to symbol B in Fig. 1). We do not
display examples of these states, as their shape is obvious by
itself [essentially the same as in Figs. 3 and 4(a) at z<<400].

IV. VORTICES

Vortical configurations, with (nearly) equal amplitudes of
the three components, are akin to the symmetric states, in the
sense that their stability may be expected at relatively large
values of coupling constant x, when the instability cannot
break the symmetry between the three components. Indeed,
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FIG. 5. (a) An example of a breather (corresponding to symbol
A in Fig. 1) with the V-component slightly taller than its U and W
counterparts. (b) The z dependence of the amplitudes of the com-
ponents V and U, W. The breather has developed from initial con-
figuration (Uy,0, U,), of type (iii), and its shape oscillates between
forms resembing two static asymmetric states shown in Fig. 2. In
this case, 6=—0.16, k=0.3.

Fig. 1 shows that both the nonvortical symmetric states and
vortices may be stable at k=0.5, and in most cases these two
species coexist, although the vortices are found to be a single
stable species at larger values of |8 (e.g., at 6=—0.26).

In the simulations, the vortex states were distinguished
from their symmetric zero-vorticity counterparts by monitor-
ing phase differences between the components, which are
24r/3 in the former case, and zero in the latter. We do not
display a separate example of a completely stationary stable
vortex (corresponding to symbol [J in Fig. 1), as it may be
actually seen in Figs. 3 and 4(a) at z<<400. However, it is
noteworthy that, in addition to the stationary vortices, we
have also found breathing ones, which perform stable
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FIG. 6. (a) A typical example of a stable breathing (oscillatory)
vortex, which has developed from the initial vortex configuration of
type (i). (b) The same shown by means of contour plots. Analysis of
numerical data confirms that this state maintains phase shifts be-
tween its three components corresponding to the vortex. Parameters
are 6=-0.06, k=0.5.
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periodic oscillations, as shown in Fig. 6, maintaining their
vortical structure (which was checked by inspecting the
phase shifts between the three components). Naturally, the
breathing vortices are found at values of « smaller than those
supporting stationary vortices, as states with equal ampli-
tudes of the three components become more fragile and ame-
nable to perturbations at smaller «, although they do not
necessarily suffer destruction and loss of the vorticity (if
any).

It is relevant to notice that rotating states (for instance, of
the “small-large-small” type, with the large component
switching along the cycle U— V— W), have not been found
in the present model. On the other hand, rotating states were
found in a model based on the two-dimensional continuous
CQ CGL equation [18].

V. CONCLUSION

We have introduced a system of three cubic-quintic com-
plex Ginzburg-Landau equations with symmetric linear cou-
plings between them, which may serve as a simplest model
of a multicore fiber laser. Stable localized states (LSs) sup-
ported by the system were identified. They subdivide in two
groups: patterns of the asymmetric type, with strong differ-
ence in the amplitudes of the three components, and symmet-
ric ones, with (nearly) equal amplitudes. Patterns belonging
to these two groups are found, respectively, at smaller and
larger values of the coupling constant. The full chart of the
LS states features bistability and tristability.

Among symmetric LS patterns, we have found a stable
vortical species, viz., triangular vortices (which may be com-
pletely stationary or periodically oscillating). In most cases,
they coexist with zero-vorticity symmetric states, but a pa-
rameter region was also found where the vortices are the
single stable species.

The work can be extended in various directions. In par-
ticular, since only two distinct types of vortices are possible
in the triangular setting, viz., ones with vorticities S=1 and 2,
and the case of S=1 was explored in the present work, it
remains to consider the variety with S=2. It may also be
interesting to consider interactions between LSs (in particu-
lar, a challenging issue is the interaction between a vortex
and an antivortex).
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